Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
J Biol Chem ; 300(2): 105646, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219817

RESUMO

The RNA exosome is a ribonuclease complex that mediates both RNA processing and degradation. This complex is evolutionarily conserved, ubiquitously expressed, and required for fundamental cellular functions, including rRNA processing. The RNA exosome plays roles in regulating gene expression and protecting the genome, including modulating the accumulation of RNA-DNA hybrids (R-loops). The function of the RNA exosome is facilitated by cofactors, such as the RNA helicase MTR4, which binds/remodels RNAs. Recently, missense mutations in RNA exosome subunit genes have been linked to neurological diseases. One possibility to explain why missense mutations in genes encoding RNA exosome subunits lead to neurological diseases is that the complex may interact with cell- or tissue-specific cofactors that are impacted by these changes. To begin addressing this question, we performed immunoprecipitation of the RNA exosome subunit, EXOSC3, in a neuronal cell line (N2A), followed by proteomic analyses to identify novel interactors. We identified the putative RNA helicase, DDX1, as an interactor. DDX1 plays roles in double-strand break repair, rRNA processing, and R-loop modulation. To explore the functional connections between EXOSC3 and DDX1, we examined the interaction following double-strand breaks and analyzed changes in R-loops in N2A cells depleted for EXOSC3 or DDX1 by DNA/RNA immunoprecipitation followed by sequencing. We find that EXOSC3 interaction with DDX1 is decreased in the presence of DNA damage and that loss of EXOSC3 or DDX1 alters R-loops. These results suggest EXOSC3 and DDX1 interact during events of cellular homeostasis and potentially suppress unscrupulous expression of genes promoting neuronal projection.


Assuntos
Exossomos , RNA , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/genética , Exossomos/metabolismo , Proteômica , Estruturas R-Loop , RNA/metabolismo , RNA Helicases/metabolismo , RNA Nuclear/metabolismo , Linhagem Celular , Animais , Camundongos
2.
Int J Biol Sci ; 20(1): 265-279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164180

RESUMO

Endometrial carcinoma (EC) is a common type of uterine cancer in developed countries, originating from the uterine epithelium. The incidence rate of EC in Taiwan has doubled from 2005. Cancer stem cells (CSCs) are a subpopulation of cancer cells that have high tumorigenicity and play a crucial role in the malignant processes of cancer. Targeting molecules associated with CSCs is essential for effective cancer treatments. This study delves into the role of Exosome component 5 (EXOSC5) in EC. Data from The Cancer Genome Atlas suggests a correlation between high EXOSC5 mRNA expression and unfavorable EC prognosis. EXOSC5 knockdown diminished EC-CSC self-renewal and reduced expression of key cancer stemness proteins, including c-MYC and SOX2. Intriguingly, this knockdown significantly curtailed tumorigenicity and CSC frequency in EC tumor spheres. A mechanistic examination revealed a reduction in netrin4 (NTN4) levels in EXOSC5-depleted EC cells. Moreover, NTN4 treatment amplified EC cell CSC activity and, when secreted, NTN4 partnered with integrin ß1, subsequently triggering the FAK/SRC axis to elevate c-MYC activity. A clear positive relation between EXOSC5 and NTN4 was evident in 93 EC tissues. In conclusion, EXOSC5 augments NTN4 expression, activating c-MYC via the integrin ß1/FAK/SRC pathway, offering potential avenues for EC diagnosis and treatment.


Assuntos
Neoplasias do Endométrio , Integrina beta1 , Humanos , Feminino , Integrina beta1/metabolismo , Transdução de Sinais/genética , Neoplasias do Endométrio/metabolismo , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Antígenos de Neoplasias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Netrinas/metabolismo
3.
Cell Mol Life Sci ; 81(1): 58, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279024

RESUMO

Reduced oxygen availability (hypoxia) triggers adaptive cellular responses via hypoxia-inducible factor (HIF)-dependent transcriptional activation. Adaptation to hypoxia also involves transcription-independent processes like post-translational modifications; however, these mechanisms are poorly characterized. Investigating the involvement of protein SUMOylation in response to hypoxia, we discovered that hypoxia strongly decreases the SUMOylation of Exosome subunit 10 (EXOSC10), the catalytic subunit of the RNA exosome, in an HIF-independent manner. EXOSC10 is a multifunctional exoribonuclease enriched in the nucleolus that mediates the processing and degradation of various RNA species. We demonstrate that the ubiquitin-specific protease 36 (USP36) SUMOylates EXOSC10 and we reveal SUMO1/sentrin-specific peptidase 3 (SENP3) as the enzyme-mediating deSUMOylation of EXOSC10. Under hypoxia, EXOSC10 dissociates from USP36 and translocates from the nucleolus to the nucleoplasm concomitant with its deSUMOylation. Loss of EXOSC10 SUMOylation does not detectably affect rRNA maturation but affects the mRNA transcriptome by modulating the expression levels of hypoxia-related genes. Our data suggest that dynamic modulation of EXOSC10 SUMOylation and localization under hypoxia regulates the RNA degradation machinery to facilitate cellular adaptation to low oxygen conditions.


Assuntos
Exossomos , Transcriptoma , Humanos , Exossomos/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Ativação Transcricional , Oxigênio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sumoilação , Exorribonucleases/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Cisteína Endopeptidases/metabolismo , Ubiquitina Tiolesterase/metabolismo
4.
Haematologica ; 109(1): 231-244, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439377

RESUMO

DIS3 gene mutations occur in approximately 10% of patients with multiple myeloma (MM); furthermore, DIS3 expression can be affected by monosomy 13 and del(13q), found in roughly 40% of MM cases. Despite the high incidence of DIS3 mutations and deletions, the biological significance of DIS3 and its contribution to MM pathogenesis remain poorly understood. In this study we investigated the functional role of DIS3 in MM, by exploiting a loss-of-function approach in human MM cell lines. We found that DIS3 knockdown inhibits proliferation in MM cell lines and largely affects cell cycle progression of MM plasma cells, ultimately inducing a significant increase in the percentage of cells in the G0/G1 phase and a decrease in the S and G2/M phases. DIS3 plays an important role not only in the control of the MM plasma cell cycle, but also in the centrosome duplication cycle, which are strictly co-regulated in physiological conditions in the G1 phase. Indeed, DIS3 silencing leads to the formation of supernumerary centrosomes accompanied by the assembly of multipolar spindles during mitosis. In MM, centrosome amplification is present in about a third of patients and may represent a mechanism leading to genomic instability. These findings strongly prompt further studies investigating the relevance of DIS3 in the centrosome duplication process. Indeed, a combination of DIS3 defects and deficient spindle-assembly checkpoint can allow cells to progress through the cell cycle without proper chromosome segregation, generating aneuploid cells which ultimately lead to the development of MM.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Centrossomo/metabolismo , Centrossomo/patologia , Mitose , Ciclo Celular/genética , Instabilidade Genômica , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo
5.
Biochemistry ; 63(1): 159-170, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38085597

RESUMO

Mtr4 is an essential RNA helicase involved in nuclear RNA processing and degradation and is a member of the Ski2-like helicase family. Ski2-like helicases share a common core architecture that includes two RecA-like domains, a winged helix, and a helical bundle (HB) domain. In Mtr4, a short C-terminal tail immediately follows the HB domain and is positioned at the interface of the RecA-like domains. The tail ends with a SLYΦ sequence motif that is highly conserved in a subset of Ski2-like helicases. Here, we show that this sequence is critical for Mtr4 function. Mutations in the C-terminus result in decreased RNA unwinding activity. Mtr4 is a key activator of the RNA exosome complex, and mutations in the SLYΦ motif produce a slow growth phenotype when combined with a partial exosome defect in S. cerevisiae, suggesting an important role of the C-terminus of Mtr4 and the RNA exosome. We further demonstrate that C-terminal mutations impair RNA degradation activity by the major RNA exosome nuclease Rrp44 in vitro. These data demonstrate a role for the Mtr4 C-terminus in regulating helicase activity and coordinating Mtr4-exosome interactions.


Assuntos
Exossomos , Proteínas de Saccharomyces cerevisiae , Exossomos/genética , Exossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/química , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases/química , DNA Helicases/metabolismo
6.
RNA ; 30(1): 89-98, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37914399

RESUMO

The eukaryotic THO complex coordinates the assembly of so-called messenger RNA-ribonucleoprotein particles (mRNPs), a process that involves cotranscriptional coating of nascent mRNAs with proteins. Once formed, mRNPs undergo a quality control step that marks them either for active transport to the cytoplasm, or Rrp6/RNA exosome-mediated degradation in the nucleus. However, the mechanism behind the quality control of nascent mRNPs is still unclear. We investigated the cotranscriptional quality control of mRNPs in budding yeast by expressing the bacterial Rho helicase, which globally perturbs yeast mRNP formation. We examined the genome-wide binding profiles of the THO complex subunits Tho2, Thp2, Hpr1, and Mft1 upon perturbation of the mRNP biogenesis, and found that Tho2 plays two roles. In addition to its function as a subunit of the THO complex, upon perturbation of mRNP biogenesis Tho2 targets Rrp6 to chromatin via its carboxy-terminal domain. Interestingly, other THO subunits are not enriched on chromatin upon perturbation of mRNP biogenesis and are not necessary for localizing Rrp6 at its target loci. Our study highlights the potential role of Tho2 in cotranscriptional mRNP quality control, which is independent of other THO subunits. Considering that both the THO complex and the RNA exosome are evolutionarily highly conserved, our findings are likely relevant for mRNP surveillance in mammals.


Assuntos
Cromatina , Proteínas de Saccharomyces cerevisiae , Cromatina/genética , Cromatina/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Cell Rep ; 42(11): 113325, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37889751

RESUMO

The RNA exosome is a versatile ribonuclease. In the nucleoplasm of mammalian cells, it is assisted by its adaptors the nuclear exosome targeting (NEXT) complex and the poly(A) exosome targeting (PAXT) connection. Via its association with the ARS2 and ZC3H18 proteins, NEXT/exosome is recruited to capped and short unadenylated transcripts. Conversely, PAXT/exosome is considered to target longer and adenylated substrates via their poly(A) tails. Here, mutational analysis of the core PAXT component ZFC3H1 uncovers a separate branch of the PAXT pathway, which targets short adenylated RNAs and relies on a direct ARS2-ZFC3H1 interaction. We further demonstrate that similar acidic-rich short linear motifs of ZFC3H1 and ZC3H18 compete for a common ARS2 epitope. Consequently, while promoting NEXT function, ZC3H18 antagonizes PAXT activity. We suggest that this organization of RNA decay complexes provides co-activation of NEXT and PAXT at loci with abundant production of short exosome substrates.


Assuntos
RNA Nuclear , Proteínas de Ligação a RNA , Animais , Núcleo Celular/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Mamíferos , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Nuclear/genética , Proteínas de Ligação a RNA/genética
8.
Nat Commun ; 14(1): 6745, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875486

RESUMO

Pervasive transcription of the human genome generates an abundance of RNAs that must be processed and degraded. The nuclear RNA exosome is the main RNA degradation machinery in the nucleus. However, nuclear exosome must be recruited to its substrates by targeting complexes, such as NEXT or PAXT. By proteomic analysis, we identify additional subunits of PAXT, including many orthologs of MTREC found in S. pombe. In particular, we show that polyA polymerase gamma (PAPγ) associates with PAXT. Genome-wide mapping of the binding sites of ZFC3H1, RBM27 and PAPγ shows that PAXT is recruited to the TSS of hundreds of genes. Loss of ZFC3H1 abolishes recruitment of PAXT subunits including PAPγ to TSSs and concomitantly increases the abundance of PROMPTs at the same sites. Moreover, PAPγ, as well as MTR4 and ZFC3H1, is implicated in the polyadenylation of PROMPTs. Our results thus provide key insights into the direct targeting of PROMPT ncRNAs by PAXT at their genomic sites.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo , Exossomos , RNA não Traduzido , Humanos , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/genética , Exossomos/metabolismo , Proteômica , RNA/metabolismo , Estabilidade de RNA/genética , RNA não Traduzido/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo
9.
Mol Cell ; 83(22): 4093-4105.e7, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37879335

RESUMO

The Ski2-Ski3-Ski8 (Ski238) helicase complex directs cytoplasmic mRNAs toward the nucleolytic exosome complex for degradation. In yeast, the interaction between Ski238 and exosome requires the adaptor protein Ski7. We determined different cryo-EM structures of the Ski238 complex depicting the transition from a rigid autoinhibited closed conformation to a flexible active open conformation in which the Ski2 helicase module has detached from the rest of Ski238. The open conformation favors the interaction of the Ski3 subunit with exosome-bound Ski7, leading to the recruitment of the exosome. In the Ski238-Ski7-exosome holocomplex, the Ski2 helicase module binds the exosome cap, enabling the RNA to traverse from the helicase through the internal exosome channel to the Rrp44 exoribonuclease. Our study pinpoints how conformational changes within the Ski238 complex regulate exosome recruitment for RNA degradation. We also reveal the remarkable conservation of helicase-exosome RNA channeling mechanisms throughout eukaryotic nuclear and cytoplasmic exosome complexes.


Assuntos
Exossomos , Proteínas de Saccharomyces cerevisiae , Exossomos/metabolismo , RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Estabilidade de RNA
10.
mBio ; 14(4): e0085223, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37458473

RESUMO

Nucleases are strictly regulated and often localized in the cell to avoid the uncontrolled degradation of DNA and RNA. Here, a new type of nuclease complex, composed of RecJ3, RecJ4, and aRNase J, was identified through its ATP-dependent association with the ubiquitin-like SAMP1 and AAA-ATPase Cdc48a. The complex was discovered in Haloferax volcanii, an archaeon lacking an RNA exosome. Genetic analysis revealed aRNase J to be essential and RecJ3, RecJ4, and Cdc48a to function in the recovery from DNA damage including genotoxic agents that generate double-strand breaks. The RecJ3:RecJ4:aRNase J complex (isolated in 2:2:1 stoichiometry) functioned primarily as a 3'-5' exonuclease in hydrolyzing RNA and ssDNA, with the mechanism non-processive for ssDNA. aRNase J could also be purified as a homodimer that catalyzed endoribonuclease activity and, thus, was not restricted to the 5'-3' exonuclease activity typical of aRNase J homologs. Moreover, RecJ3 and RecJ4 could be purified as a 560-kDa subcomplex in equimolar subunit ratio with nuclease activities mirroring the full RecJ3/4-aRNase J complex. These findings prompted reconstitution assays that suggested RecJ3/4 could suppress, alter, and/or outcompete the nuclease activities of aRNase J. Based on the phenotypic results, this control mechanism of aRNase J by RecJ3/4 is not necessary for cell growth but instead appears important for DNA repair. IMPORTANCE Nucleases are critical for various cellular processes including DNA replication and repair. Here, a dynamic type of nuclease complex is newly identified in the archaeon Haloferax volcanii, which is missing the canonical RNA exosome. The complex, composed of RecJ3, RecJ4, and aRNase J, functions primarily as a 3'-5' exonuclease and was discovered through its ATP-dependent association with the ubiquitin-like SAMP1 and Cdc48a. aRNase J alone forms a homodimer that has endonuclease function and, thus, is not restricted to 5'-3' exonuclease activity typical of other aRNase J enzymes. RecJ3/4 appears to suppress, alter, and/or outcompete the nuclease activities of aRNase J. While aRNase J is essential for growth, RecJ3/4, Cdc48a, and SAMPs are important for recovery against DNA damage. These biological distinctions may correlate with the regulated nuclease activity of aRNase J in the RecJ3/4-aRNaseJ complex.


Assuntos
Haloferax volcanii , Haloferax volcanii/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Fosfodiesterase I/genética , Fosfodiesterase I/metabolismo , Ubiquitina/metabolismo , Dano ao DNA , Exonucleases/genética , Exonucleases/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , RNA/metabolismo , Trifosfato de Adenosina/metabolismo
11.
Wiley Interdiscip Rev RNA ; 14(6): e1795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384835

RESUMO

RNA stability and quality control are integral parts of gene expression regulation. A key factor shaping eukaryotic transcriptomes, mainly via 3'-5' exoribonucleolytic trimming or degradation of diverse transcripts in nuclear and cytoplasmic compartments, is the RNA exosome. Precise exosome targeting to various RNA molecules requires strict collaboration with specialized auxiliary factors, which facilitate interactions with its substrates. The predominant class of cytoplasmic RNA targeted by the exosome are protein-coding transcripts, which are carefully scrutinized for errors during translation. Normal, functional mRNAs are turned over following protein synthesis by the exosome or by Xrn1 5'-3'-exonuclease, acting in concert with Dcp1/2 decapping complex. In turn, aberrant transcripts are eliminated by dedicated surveillance pathways, triggered whenever ribosome translocation is impaired. Cytoplasmic 3'-5' mRNA decay and surveillance are dependent on the tight cooperation between the exosome and its evolutionary conserved co-factor-the SKI (superkiller) complex (SKIc). Here, we summarize recent findings from structural, biochemical, and functional studies of SKIc roles in controlling cytoplasmic RNA metabolism, including links to various cellular processes. Mechanism of SKIc action is illuminated by presentation of its spatial structure and details of its interactions with exosome and ribosome. Furthermore, contribution of SKIc and exosome to various mRNA decay pathways, usually converging on recycling of ribosomal subunits, is delineated. A crucial physiological role of SKIc is emphasized by describing association between its dysfunction and devastating human disease-a trichohepatoenteric syndrome (THES). Eventually, we discuss SKIc functions in the regulation of antiviral defense systems, cell signaling and developmental transitions, emerging from interdisciplinary investigations. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo , Exossomos , Humanos , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA , Antivirais
12.
Microbiol Spectr ; 11(3): e0505822, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37158744

RESUMO

The RNA exosome complex is a conserved, multisubunit RNase complex that contributes to the processing and degradation of RNAs in mammalian cells. However, the roles of the RNA exosome in phytopathogenic fungi and how it relates to fungal development and pathogenicity remain unclear. Herein, we identified 12 components of the RNA exosome in the wheat fungal pathogen Fusarium graminearum. Live-cell imaging showed that all the components of the RNA exosome complex are localized in the nucleus. FgEXOSC1 and FgEXOSCA were successfully knocked out; they are both involved in the vegetative growth, sexual reproduction, and pathogenicity of F. graminearum. Moreover, deletion of FgEXOSC1 resulted in abnormal toxisomes, decreased deoxynivalenol (DON) production, and downregulation of the expression levels of DON biosynthesis genes. The RNA-binding domain and N-terminal region of FgExosc1 are required for its normal localization and functions. Transcriptome sequencing (RNA-seq) showed that the disruption of FgEXOSC1 resulted in differential expression of 3,439 genes. Genes involved in processing of noncoding RNA (ncRNA), rRNA and ncRNA metabolism, ribosome biogenesis, and ribonucleoprotein complex biogenesis were significantly upregulated. Furthermore, subcellular localization, green fluorescent protein (GFP) pulldown, and coimmunoprecipitation (co-IP) assays demonstrated that FgExosc1 associates with the other components of the RNA exosome to form the RNA exosome complex in F. graminearum. Deletion of FgEXOSC1 and FgEXOSCA reduced the relative expression of some of the other subunits of the RNA exosome. Deletion of FgEXOSC1 affected the localization of FgExosc4, FgExosc6, and FgExosc7. In summary, our study reveals that the RNA exosome is involved in vegetative growth, sexual reproduction, DON production, and pathogenicity of F. graminearum. IMPORTANCE The RNA exosome complex is the most versatile RNA degradation machinery in eukaryotes. However, little is known about how this complex regulates the development and pathogenicity of plant-pathogenic fungi. In this study, we systematically identified 12 components of the RNA exosome complex in Fusarium head blight fungus Fusarium graminearum and first unveiled their subcellular localizations and established their biological functions in relation to the fungal development and pathogenesis. All the RNA exosome components are localized in the nucleus. FgExosc1 and FgExoscA are both required for the vegetative growth, sexual reproduction, DON production and pathogenicity in F. graminearum. FgExosc1 is involved in ncRNA processing, rRNA and ncRNA metabolism process, ribosome biogenesis and ribonucleoprotein complex biogenesis. FgExosc1 associates with the other components of RNA exosome complex and form the exosome complex in F. graminearum. Our study provides new insights into the role of the RNA exosome in regulating RNA metabolism, which is associated with fungal development and pathogenicity.


Assuntos
Fusarium , Tricotecenos , Fusarium/genética , Virulência/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Tricotecenos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ribonucleoproteínas/metabolismo
13.
Biochem Biophys Res Commun ; 666: 36-44, 2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37172450

RESUMO

DIS3 is an RNA exosome associated ribonuclease that degrades a wide range of transcripts that can be essential for cell survival and development. The proximal region of the mouse epididymis (initial segment and caput) plays a pivotal role in sperm transport and maturation required for male fertility. However, whether DIS3 ribonuclease mediates RNA decay in proximal epididymides remains unclear. Herein, we established a conditional knockout mouse line by crossing a floxed Dis3 allele with Lcn9-cre mice in which the recombinase is expressed in the principal cells of initial segment as early as post-natal day 17. Morphological and histological analyses, immunofluorescence, computer-aided sperm analysis and fertility were used for functional analyses. We document that DIS3 deficiency in the initial segment had no effect on male fertility. Dis3 cKO males had normal spermatogenesis and initial segment development. In cauda epididymides of Dis3 cKO mice, sperm abundance, morphology, motility, and the frequency of acrosome exocytosis were comparable to controls. Collectively, our genetic model demonstrates that loss of DIS3 in the initial segment of the epididymis is not essential for sperm maturation, motility, or male fertility.


Assuntos
Epididimo , Exossomos , Masculino , Animais , Camundongos , Epididimo/metabolismo , Maturação do Esperma , Ribonuclease Pancreático/metabolismo , Ribonucleases/metabolismo , Sêmen , Espermatozoides/metabolismo , Fertilidade/genética , Camundongos Knockout , Motilidade dos Espermatozoides/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo
14.
Proc Natl Acad Sci U S A ; 120(21): e2215155120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37192170

RESUMO

Chemistry-alone approach has recently been applied for incepting pluripotency in somatic cells, representing a breakthrough in biology. However, chemical reprogramming is hampered by low efficiency, and the underlying molecular mechanisms remain unclear. Particularly, chemical compounds do not have specific DNA-recognition domains or transcription regulatory domains, and then how do small molecules work as a driving force for reinstating pluripotency in somatic cells? Furthermore, how to efficiently clear materials and structures of an old cell to prepare the rebuilding of a new one? Here, we show that small molecule CD3254 activates endogenous existing transcription factor RXRα to significantly promote mouse chemical reprogramming. Mechanistically, CD3254-RXRα axis can directly activate all the 11 RNA exosome component genes (Exosc1-10 and Dis3) at transcriptional level. Unexpectedly, rather than degrading mRNAs as its substrates, RNA exosome mainly modulates the degradation of transposable element (TE)-associated RNAs, particularly MMVL30, which is identified as a new barrier for cell-fate determination. In turn, MMVL30-mediated inflammation (IFN-γ and TNF-α pathways) is reduced, contributing to the promotion of successful reprogramming. Collectively, our study provides conceptual advances for translating environmental cues into pluripotency inception, particularly, identifies that CD3254-RXRα-RNA exosome axis can promote chemical reprogramming, and suggests modulation of TE-mediated inflammation via CD3254-inducible RNA exosome as important opportunities for controlling cell fates and regenerative medicine.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Camundongos , Animais , Reprogramação Celular/genética , Fatores de Transcrição/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Ácidos Cumáricos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo
15.
Nucleic Acids Res ; 51(8): 3934-3949, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36912080

RESUMO

The RNA exosome is an essential 3' to 5' exoribonuclease complex that mediates degradation, processing and quality control of virtually all eukaryotic RNAs. The nucleolar RNA exosome, consisting of a nine-subunit core and a distributive 3' to 5' exonuclease EXOSC10, plays a critical role in processing and degrading nucleolar RNAs, including pre-rRNA. However, how the RNA exosome is regulated in the nucleolus is poorly understood. Here, we report that the nucleolar ubiquitin-specific protease USP36 is a novel regulator of the nucleolar RNA exosome. USP36 binds to the RNA exosome through direct interaction with EXOSC10 in the nucleolus. Interestingly, USP36 does not significantly regulate the levels of EXOSC10 and other tested exosome subunits. Instead, it mediates EXOSC10 SUMOylation at lysine (K) 583. Mutating K583 impaired the binding of EXOSC10 to pre-rRNAs, and the K583R mutant failed to rescue the defects in rRNA processing and cell growth inhibition caused by knockdown of endogenous EXOSC10. Furthermore, EXOSC10 SUMOylation is markedly reduced in cells in response to perturbation of ribosomal biogenesis. Together, these results suggest that USP36 acts as a SUMO ligase to promote EXOSC10 SUMOylation critical for the RNA exosome function in ribosome biogenesis.


Assuntos
Exorribonucleases , Complexo Multienzimático de Ribonucleases do Exossomo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Humanos , Linhagem Celular
16.
Int J Biol Sci ; 19(4): 1080-1093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923944

RESUMO

EXOSC10 is a catalytic subunit of the nuclear RNA exosome, and possesses a 3'-5' exoribonuclease activity. The enzyme processes and degrades different classes of RNAs. To delineate the role of EXOSC10 during oocyte growth, specific Exosc10 inactivation was performed in oocytes from the primordial follicle stage onward using the Gdf9-iCre; Exosc10 f/- mouse model (Exosc10 cKO(Gdf9)). Exosc10 cKO(Gdf9) female mice are infertile. The onset of puberty and the estrus cycle in mutants are initially normal and ovaries contain all follicle classes. By the age of eight weeks, vaginal smears reveal irregular estrus cycles and mutant ovaries are completely depleted of follicles. Mutant oocytes retrieved from the oviduct are degenerated, and occasionally show an enlarged polar body, which may reflect a defective first meiotic division. Under fertilization conditions, the mutant oocytes do not enter into an embryonic development process. Furthermore, we conducted a comparative proteome analysis of wild type and Exosc10 knockout mouse ovaries, and identified EXOSC10-dependent proteins involved in many biological processes, such as meiotic cell cycle progression and oocyte maturation. Our results unambiguously demonstrate an essential role for EXOSC10 in oogenesis and may serve as a model for primary ovarian insufficiency in humans. Data are available via ProteomeXchange with identifier PXD039417.


Assuntos
Fenômenos Biológicos , Reserva Ovariana , Animais , Feminino , Humanos , Lactente , Camundongos , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Oócitos/metabolismo , Oogênese/genética
17.
G3 (Bethesda) ; 13(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-36861343

RESUMO

The RNA exosome is a conserved molecular machine that processes/degrades numerous coding and non-coding RNAs. The 10-subunit complex is composed of three S1/KH cap subunits (human EXOSC2/3/1; yeast Rrp4/40/Csl4), a lower ring of six PH-like subunits (human EXOSC4/7/8/9/5/6; yeast Rrp41/42/43/45/46/Mtr3), and a singular 3'-5' exo/endonuclease DIS3/Rrp44. Recently, several disease-linked missense mutations have been identified in structural cap and core RNA exosome genes. In this study, we characterize a rare multiple myeloma patient missense mutation that was identified in the cap subunit gene EXOSC2. This missense mutation results in a single amino acid substitution, p.Met40Thr, in a highly conserved domain of EXOSC2. Structural studies suggest that this Met40 residue makes direct contact with the essential RNA helicase, MTR4, and may help stabilize the critical interaction between the RNA exosome complex and this cofactor. To assess this interaction in vivo, we utilized the Saccharomyces cerevisiae system and modeled the EXOSC2 patient mutation into the orthologous yeast gene RRP4, generating the variant rrp4-M68T. The rrp4-M68T cells show accumulation of certain RNA exosome target RNAs and show sensitivity to drugs that impact RNA processing. We also identified robust negative genetic interactions between rrp4-M68T and specific mtr4 mutants. A complementary biochemical approach revealed that Rrp4 M68T shows decreased interaction with Mtr4, consistent with these genetic results. This study suggests that the EXOSC2 mutation identified in a multiple myeloma patient impacts the function of the RNA exosome and provides functional insight into a critical interface between the RNA exosome and Mtr4.


Assuntos
Mieloma Múltiplo , Proteínas de Saccharomyces cerevisiae , Humanos , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/química , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , RNA/genética , RNA Helicases/genética , RNA Helicases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Cell Rep ; 42(2): 112047, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36724075

RESUMO

Mammalian development is precisely controlled by cell differentiation. Identifying new regulators and investigating their interactions provide insight into genetic networks defining pre-implantation development. We established a knockout mouse model of Dis3, an exosome associated ribonuclease. Homozygous Dis3 null embryos arrest at the morula stage of development. Using single-embryo RNA sequencing (RNA-seq), we observed persistence of Pou6f1 mRNA in homozygous null Dis3 embryos and that the cognate protein represses transcription of Nanog and Cdx2. The resultant defects in cell differentiation disrupt the morula-to-blastocyst transition and are embryonic lethal. Microinjection of Dis3 mRNA into zygotes rescues the phenotype. Point mutations of Dis3 ribonuclease in individual blastomeres prevents their incorporation into embryos. To overcome the paucity of embryos, we derived homozygous Dis3 null mouse embryonic stem cells to identify additional gene targets of POU6F1. Our findings delineate a regulatory pathway of DIS3-POU6F1 in pre-implantation mammalian embryogenesis.


Assuntos
Diferenciação Celular , Desenvolvimento Embrionário , Ribonucleases , Animais , Camundongos , Blastocisto/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Mamíferos/metabolismo , Ribonucleases/metabolismo , RNA Mensageiro/metabolismo
19.
Proc Natl Acad Sci U S A ; 119(48): e2210532119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409902

RESUMO

A hexanucleotide repeat expansion in intron 1 of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia, or c9ALS/FTD. The RNA transcribed from the expansion, r(G4C2)exp, causes various pathologies, including intron retention, aberrant translation that produces toxic dipeptide repeat proteins (DPRs), and sequestration of RNA-binding proteins (RBPs) in RNA foci. Here, we describe a small molecule that potently and selectively interacts with r(G4C2)exp and mitigates disease pathologies in spinal neurons differentiated from c9ALS patient-derived induced pluripotent stem cells (iPSCs) and in two c9ALS/FTD mouse models. These studies reveal a mode of action whereby a small molecule diminishes intron retention caused by the r(G4C2)exp and allows the liberated intron to be eliminated by the nuclear RNA exosome, a multi-subunit degradation complex. Our findings highlight the complexity of mechanisms available to RNA-binding small molecules to alleviate disease pathologies and establishes a pipeline for the design of brain penetrant small molecules targeting RNA with novel modes of action in vivo.


Assuntos
Exossomos , Demência Frontotemporal , Animais , Camundongos , Demência Frontotemporal/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , RNA/genética , Exossomos/metabolismo , Barreira Hematoencefálica/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Encéfalo/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA Nuclear
20.
EMBO J ; 41(22): e108040, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36215697

RESUMO

The ribonuclease DIS3 is one of the most frequently mutated genes in the hematological cancer multiple myeloma, yet the basis of its tumor suppressor function in this disease remains unclear. Herein, exploiting the TCGA dataset, we found that DIS3 plays a prominent role in the DNA damage response. DIS3 inactivation causes genomic instability by increasing mutational load, and a pervasive accumulation of DNA:RNA hybrids that induces genomic DNA double-strand breaks (DSBs). DNA:RNA hybrid accumulation also prevents binding of the homologous recombination (HR) machinery to double-strand breaks, hampering DSB repair. DIS3-inactivated cells become sensitive to PARP inhibitors, suggestive of a defect in homologous recombination repair. Accordingly, multiple myeloma patient cells mutated for DIS3 harbor an increased mutational burden and a pervasive overexpression of pro-inflammatory interferon, correlating with the accumulation of DNA:RNA hybrids. We propose DIS3 loss in myeloma to be a driving force for tumorigenesis via DNA:RNA hybrid-dependent enhanced genome instability and increased mutational rate. At the same time, DIS3 loss represents a liability that might be therapeutically exploited in patients whose cancer cells harbor DIS3 mutations.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Ribonucleases/metabolismo , Reparo de DNA por Recombinação , Recombinação Homóloga , Instabilidade Genômica , Reparo do DNA , DNA/metabolismo , RNA , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...